Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
OTO Open ; 7(1): e37, 2023.
Article in English | MEDLINE | ID: covidwho-2274370

ABSTRACT

Objectives: To identify trends in timing of pediatric cochlear implant (CI) care during COVID-19. Study Design: Retrospective cohort. Setting: Tertiary care center. Methods: Patients under 18 years of age who underwent CI between 1/1/2016 and 2/29/2020 were included in the pre-COVID-19 group, and patients implanted between 3/1/2020 and 12/31/2021 comprised the COVID-19 group. Revision and sequential surgeries were excluded. Time intervals between care milestones including severe-to-profound hearing loss diagnosis, initial CI candidacy evaluation, and surgery were compared among groups, as were the number and type of postoperative visits. Results: A total of 98 patients met criteria; 70 were implanted pre-COVID-19 and 28 during COVID-19. A significant increase in the interval between CI candidacy evaluation and surgery was seen among patients with prelingual deafness during COVID-19 compared with pre-COVID-19 (µ = 47.3 weeks, 95% confidence interval [CI]: 34.8-59.9 vs µ = 20.5 weeks, 95% CI: 13.1-27.9; p < .001). Patients in the COVID-19 group attended fewer in-person rehabilitation visits in the 12 months after surgery (µ = 14.9 visits, 95% CI: 9.7-20.1 vs µ = 20.9, 95% CI: 18.1-23.7; p = .04). Average age at implantation in the COVID-19 group was 5.7 years (95% CI: 4.0-7.5) versus 3.7 years in the pre-COVID-19 group (95% CI: 2.9-4.6; p = .05). The time interval between hearing loss confirmation and CI surgery was on average 99.7 weeks for patients implanted during COVID-19 (95% CI: 48.8-150) versus 54.2 weeks for patients implanted pre-COVID (95% CI: 39.6-68.8), which was not a statistically significant difference (p = .1). Conclusion: During the COVID-19 pandemic patients with prelingual deafness experienced delays in care relative to patients implanted before the pandemic.

2.
J Vis Exp ; (183)2022 05 18.
Article in English | MEDLINE | ID: covidwho-1879504

ABSTRACT

Histopathologic analysis of human temporal bone sections is a fundamental technique for studying inner and middle ear pathology. Temporal bone sections are prepared by postmortem temporal bone harvest, fixation, decalcification, embedding, and staining. Due to the density of the temporal bone, decalcification is a time-consuming and resource-intensive process; complete tissue preparation may take 9-10 months on average. This slows otopathology research and hinders time-sensitive studies, such as those relevant to the COVID-19 pandemic. This paper describes a technique for the rapid preparation and decalcification of temporal bone sections to speed tissue processing. Temporal bones were harvested postmortem using standard techniques and fixed in 10% formalin. A precision microsaw with twin diamond blades was used to cut each section into three thick sections. Thick temporal bone sections were then decalcified in decalcifying solution for 7-10 days before being embedded in paraffin, sectioned into thin (10 µm) sections using a cryotome, and mounted on uncharged slides. Tissue samples were then deparaffinized and rehydrated for antibody staining (ACE2, TMPRSS2, Furin) and imaged. This technique reduced the time from harvest to tissue analysis from 9-10 months to 10-14 days. High-speed temporal bone sectioning may increase the speed of otopathology research and reduce the resources necessary for tissue preparation, while also facilitating time-sensitive studies such as those related to COVID-19.


Subject(s)
COVID-19 , Ear, Middle , Humans , Pandemics , Staining and Labeling , Temporal Bone/pathology
3.
JAMA Otolaryngol Head Neck Surg ; 148(4): 307-315, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1706644

ABSTRACT

IMPORTANCE: Emerging reports of sudden sensorineural hearing loss (SSNHL) after COVID-19 vaccination within the otolaryngological community and the public have raised concern about a possible association between COVID-19 vaccination and the development of SSNHL. OBJECTIVE: To examine the potential association between COVID-19 vaccination and SSNHL. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study and case series involved an up-to-date population-based analysis of 555 incident reports of probable SSNHL in the Centers for Disease Control and Prevention Vaccine Adverse Events Reporting System (VAERS) over the first 7 months of the US vaccination campaign (December 14, 2020, through July 16, 2021). In addition, data from a multi-institutional retrospective case series of 21 patients who developed SSNHL after COVID-19 vaccination were analyzed. The study included all adults experiencing SSNHL within 3 weeks of COVID-19 vaccination who submitted reports to VAERS and consecutive adult patients presenting to 2 tertiary care centers and 1 community practice in the US who were diagnosed with SSNHL within 3 weeks of COVID-19 vaccination. EXPOSURES: Receipt of a COVID-19 vaccine produced by any of the 3 vaccine manufacturers (Pfizer-BioNTech, Moderna, or Janssen/Johnson & Johnson) used in the US. MAIN OUTCOMES AND MEASURES: Incidence of reports of SSNHL after COVID-19 vaccination recorded in VAERS and clinical characteristics of adult patients presenting with SSNHL after COVID-19 vaccination. RESULTS: A total of 555 incident reports in VAERS (mean patient age, 54 years [range, 15-93 years]; 305 women [55.0%]; data on race and ethnicity not available in VAERS) met the definition of probable SSNHL (mean time to onset, 6 days [range, 0-21 days]) over the period investigated, representing an annualized incidence estimate of 0.6 to 28.0 cases of SSNHL per 100 000 people per year. The rate of incident reports of SSNHL was similar across all 3 vaccine manufacturers (0.16 cases per 100 000 doses for both Pfizer-BioNTech and Moderna vaccines, and 0.22 cases per 100 000 doses for Janssen/Johnson & Johnson vaccine). The case series included 21 patients (mean age, 61 years [range, 23-92 years]; 13 women [61.9%]) with SSNHL, with a mean time to onset of 6 days (range, 0-15 days). Patients were heterogeneous with respect to clinical and demographic characteristics. Preexisting autoimmune disease was present in 6 patients (28.6%). Of the 14 patients with posttreatment audiometric data, 8 (57.1%) experienced improvement after receiving treatment. One patient experienced SSNHL 14 days after receiving each dose of the Pfizer-BioNTech vaccine. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, findings from an updated analysis of VAERS data and a case series of patients who experienced SSNHL after COVID-19 vaccination did not suggest an association between COVID-19 vaccination and an increased incidence of hearing loss compared with the expected incidence in the general population.


Subject(s)
COVID-19 , Hearing Loss, Sensorineural , Hearing Loss, Sudden , Vaccines , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cross-Sectional Studies , Female , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sudden/epidemiology , Hearing Loss, Sudden/etiology , Humans , Male , Middle Aged , Retrospective Studies , Vaccination/adverse effects
5.
JMIR Med Educ ; 7(4): e25654, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1599308

ABSTRACT

BACKGROUND: Despite the ubiquity of social media, the utilization and audience reach of this communication method by otolaryngology-head and neck surgery (OHNS) residency programs has not been investigated. OBJECTIVE: The purpose of this study was to evaluate the content posted to a popular social media platform (Twitter) by OHNS residency programs. METHODS: In this cross-sectional study, we identified Twitter accounts for accredited academic OHNS residency programs. Tweets published over a 6-month period (March to August 2019) were extracted. Tweets were categorized and analyzed for source (original versus retweet) and target audience (medical versus layman). A random sample of 100 tweets was used to identify patterns of content, which were then used to categorize additional tweets. We quantified the total number of likes or retweets by health care professionals. RESULTS: Of the 121 accredited programs, 35 (28.9%) had Twitter accounts. Of the 2526 tweets in the 6-month period, 1695 (67.10%) were original-content tweets. The majority of tweets (1283/1695, 75.69%) were targeted toward health care workers, most of which did not directly contain medical information (954/1283, 74.36%). These tweets contained information about the department's trainees and education (349/954, 36.6%), participation at conferences (263/954, 27.6%), and research publications (112/954, 11.7%). Two-thirds of all tweets did not contain medical information. Medical professionals accounted for 1249/1362 (91.70%) of retweets and 5616/6372 (88.14%) of likes on original-content tweets. CONCLUSIONS: The majority of Twitter usage by OHNS residency programs is for intra and interprofessional communication, and only a minority of tweets contain information geared toward the public. Communication and information sharing with patients is not the focus of OHNS departments on Twitter.

6.
SELECTION OF CITATIONS
SEARCH DETAIL